Сотрудники физического факультета МГУ, Научно-образовательной школы «Фотонные и квантовые технологии. Цифровая медицина» и Национального исследовательского центра «Курчатовский институт» исследовали физические факторы, влияющие на эффективность генерации широкополосного излучения терагерцового (ТГц) диапазона, и экспериментально получили однопериодные импульсы в данном диапазоне частот с величиной поля свыше 5 106 В/см.

Терагерцовое (ТГц) излучение — вид электромагнитного излучения, спектр частот которого расположен между инфракрасным и микроволновым диапазонами. Обычно его определяют в диапазоне 0,1–10 ТГц, что соответствует длинам волн от 3 до 0,03 мм. Низкочастотную часть спектра иногда определяют как субмиллиметровую область электромагнитного излучения, а его высокочастотную часть как дальнее инфракрасное излучение. Определение механизмов генерации и управление пространственно-временными свойствами ТГц сигнала вызывают большой интерес для фундаментальной и прикладной нелинейной оптики, что позволяет использовать его для решения многих важных прикладных задач. Активно расширяющиеся области применения ТГц излучения требуют мощных и широкополосных, но компактных и надежных источников хорошо контролируемых сигналов поля ТГц диапазона.

Эксперименты проводились на уникальной суб-петаваттной титан-сапфировой лазерной системе, входящей в состав лазерно-синхротронного комплекса НИЦ «Курчатовский институт». Излучение на длине волны 800 нм с энергией до 300 мДж и длительностью 26 фс пропускалось через тонкий кристалл ниобата лития большой площади, который использовался для нелинейно-оптического преобразования лазерных импульсов в ТГц диапазон частот. Генерируемое излучение собиралось параболическими зеркалами, при этом исследовались как его энергия, так и спектр.

Сотрудники физического факультета МГУ и НИЦ «Курчатовский институт» нашли простые соотношения (энергии, длительности импульса и диаметра пучка), при которых энергия лазерных импульсов оптимальным образом масштабируется площадью нелинейного кристалла, и экспериментально получили однопериодные импульсы в ТГц диапазоне частот с рекордной величиной поля. Данное исследование позволяет использовать лазерные импульсы мультитераваттной мощности для получения электромагнитного излучения ТГц диапазона с выходной энергией на единицу площади кристалла порядка 10 мкДж/см2.

Работа опубликована в высокорейтинговом журнале OpticsLetters и признана одной из лучших в его декабрьском выпуске. Статья была отмечена редактором выпуска как Editor's Pick (Выбор редактора). Данная отметка позволяет выделить статьи с превосходным научным качеством и отражает выдающиеся успехи авторов в конкретной области исследований.

«Полученные таким способом однопериодные импульсы ТГц диапазона открывают возможность экспериментального исследования воздействия на вещество сверхсильного квазистационарного электрического поля с амплитудой 5 МВ/см, длительность которого всего 0.1 пс, что не приводит к разрушению исследуемого материала», - рассказывает старший научный сотрудник физического факультета Дмитрий Сидоров-Бирюков.

Проведенные исследования позволят правильно выбирать размер нелинейно-оптических кристаллов для высоких энергий падающего лазерного излучения и получать все более мощные однопериодные ТГц импульсы, что в дальнейшем приведет к развитию нового направления науки – нелинейной оптики в ТГц диапазоне.
https://scientificrussia.ru/

Физики исследовали однофотонную фотоионизацию молекулы NO под действием синхротронного излучения, опосредованную резонансом формы. Они увидели, что, несмотря на сложную угловую зависимость параметров вылетевшего электрона, вызванную интерференцией между нерезонансным и резонансным каналами ионизации, во втором случае время задержки не зависит от направления его импульса. Исследование опубликовано в Nature Communications.

Квантовая интерференция традиционно ассоциируется с хрестоматийным двухщелевым экспериментом с электроном. Его использовал Ричард Фейнман для наглядной иллюстрации принципа суперпозиции амплитуд вероятности, суть которого в том, что наличие нескольких альтернативных способов протекания физического процесса приводит к их интерференции друг с другом. В том опыте она проявляется через волнообразную дифракционную картину на экране. Этот принцип максимально универсален и работает не только для различных траекторий, а вообще для любых альтернатив.

Квантовая интерференция играет большую роль в квантовых системах со сложной энергетической структурой, типичным примером которых оказываются молекулы. Помимо богатства электронных, колебательных и вращательных уровней они иногда демонстрируют резонансы — квазисвязанные состояния ионизированного или рассеянного электрона, вызванные сложным балансом сил, действующих на него. Фотоионизация электрона может происходить как напрямую, так через резонансы, что, согласно принципу суперпозиции, приводит к квантовой интерференции, выражающейся через угловую анизотропию параметров рассеяния. К таким параметрам можно отнести амплитуду, фазу и время задержки, к которому экспериментаторы лишь недавно получили доступ. Сегодня физики расширяют перечень молекул, для которых наблюдается этот эффект, а также методов его исследования.

Группа исследователей из Дании, США и Франции под руководством Даниэля Дауэк (Danielle Dowek) из Университета Париж-Сакле сконцентрировала свое внимание на однофотонной внутривалентной ионизации молекул NO. Анализ амплитуд и фаз вылетающих электронов, измеренных в эксперименте и обработанных с помощью многоканального формализма Фано, позволил выделить канал ионизации, опосредованный резонансном формы молекулы. Оказалось, что временная задержка резонансной составляющей не зависит от угла вылета электрона в системе покоя молекулы.

Для этого физики облучали пучок молекул NO синхротронным излучением в диапазоне от 23,25 до 38,75 электронвольт. Фотоны с такими энергиями отрывали электроны от внутренних оболочек, что приводило к диссоциации молекулы. Одним из каналов ионизации был хорошо известный резонанс формы 4σ→kσ*, чей профиль совпадает с выбранным диапазоном энергий. Заряженные продукты этой реакции — электрон и ион азота — попадали на импульсный спектрометр типа COLTRIMS, работающий в режиме совпадения. Это позволяло восстановить энергию и фазу электрона в системе покоя молекулы, а также время задержки фотоионизации, определяемое через производную фазы по энергии.

Авторы сфокусировались на конфигурации ионизации, при которой оси молекул оказывались ориентированы вдоль направления поляризации света. В этом случае параметры вылетевшего электрона демонстрировали цилиндрическую симметрию, что позволило ограничиться только полярным углом. Физики дополнили эксперимент симуляцией с помощью метода многоканального взаимодействия в конфигурации Швингера, которая показала хорошее согласие с экспериментом.
Для анализа угловой зависимости измеренных и вычисленных данных, исследователи подвергли их обработке с помощью многоканального формализма Фано. Его суть заключалась в разложении параметров рассеяния по парциальным сферическим волнам и разделении соответствующих коэффициентов на резонансные и нерезонансные компоненты. Обратное сложение компонент позволило построить амплитуду, фазу и время задержки фотоионизации для обоих каналов по отдельности. Анализ показал, что хоть амплитуда и фаза в случае ионизации через резонанс демонстрируют ярко выраженную угловую зависимость, ее нет для времени задержки. При этом, как показало исследование, общая временная задержка фотоионизации во многом определяется именно вигнеровским механизмом, возникающим при резонансе формы.

Вигнеровские задержки ранее изучала другая группа физиков, в похожем эксперименте с молекулами моноксида углерода. А еще одна коллаборация нашла новые эффекты при измерении времени задержки при двухфотонной фотоионизации молекул фторида углерода через резонанс формы.
https://nplus1.ru/

Международная исследовательская группа, в которую входили ученые из университета Регенсбурга, Германия, ученые из Беркли и Йельского университета, США, Кембриджа, Великобритания, и Цукубы, Япония, произвела измерения весьма странного эффекта, возникающего в среде одного из относительно новых видов полупроводниковых материалов. Согласно полученным результатам, некоторые электроны в этом материале ведут себя так, словно они обладают массой с отрицательным значением.
Отметим, что множество вещей в окружающем нас мире характеризуется только положительными величинами. До последнего времени масса или вес физического объекта также относился к положительной величине, что являлось одной из неразрешенных загадок современной физики. Однако, в природе существует и множество вещей с отрицательными значениями их некоторых характеристик, и что бы могло произойти, если масса объекта также могла стать отрицательной величиной?
Согласно законам ньютоновской механики прикладываемая к объекту сила равна значению его массы, помноженному на ускорение движения (F=m*a). Другими словами, если на какой-то объект действует сила, то он начинает двигаться с ускорением. Однако, если попытаться пнуть камень с отрицательной массой, то стоит поберечься, этот камень полетит в обратном направлении. Аналогично мяч для гольфа с отрицательной массой, попав в воду, будет не тормозиться сопротивлением воды, а наоборот, двигаться с ускорением.
В основном все эти законы действуют и на атомарном уровне. Нам известно, что масса атома элемента определяется в большей части массой ядра этого атома, суммой масс всех входящих в ядро протонов и нейтронов. Эффективная же масса третьей составляющей атома, электронов, во многом зависит от свойств электронных материала, в котором двигаются эти электроны. Когда электрон движется в материале, он постоянно сталкивается с другими электронами и ядрами атомов. Такие столкновения приводят к замедлению движения электрона, обладающего положительной массой, и возникновению явления, известного как электрическое сопротивление материала.
Однако, если вдруг электрон станет обладать отрицательной массой, он при столкновениях будет терять энергию, ускоряясь при этом. И именно за такими эффектами ученым удалось наблюдать впервые за всю историю науки. Ученые использовали относительно новый тип полупроводникового материала, диселенида вольфрама, лист которого имеет практически одноатомную толщину. Когда такой материал освещается светом лазера, он начинает светиться, электроны поглощают энергию фотонов лазерного света и через короткое время излучают собственный фотон характерного красного цвета. Цвет излучаемых фотонов соответствует фундаментальной энергии электрона в полупроводнике, который должен всегда светиться только красным цветом.
Однако, ученым удалось наблюдать удивительный эффект, при облучении диселенида вольфрама красным лазером электроны материала излучали не только красный свет, но и более высокоэнергетический синий. Как показали дальнейшие исследования, низкоэнергетические фотоны красного цвета были преобразованы в высокоэнергетические фотоны синего цвета за счет экстраординарного эффекта. Проведя спектральный анализ, ученые пришли к заключению, что источниками фотонов синего света были именно электроны с отрицательной массой. И такое неожиданное экспериментальное открытие может быть подтверждено в будущем при помощи специального электронного устройства с элементами, подобным элементам, используемым сейчас в технологиях квантовых вычислений.
В настоящее время данное открытие пока еще походит на нечто невероятное, тем не менее, ученые уже успели придумать несколько областей его практического применения. К примеру, эффект отрицательной массы электронов может быть использован для создания сверхбыстрых компьютеров, в цепях которых электроны будут перемещаться, не встречая сопротивления. Также ученых весьма интересует момент перехода электрона от положительной массы к отрицательной и наоборот.
Этот момент чем-то родственен попытке деления числа на ноль или понятию черной дыры в современной космологии. Тем не менее, в моменты таких переходов могут возникать весьма экзотические явления, которые можно будет в будущем поставить на службу всему человечеству.
Перевод: https://dailytechinfo.org/

Физики-теоретики из Притцкеровской школы молекулярной инженерии при Чикагском университете разработали новую схему улавливания одиночных фотонов в полости. Их механизм позволяет двум источникам излучать выбранное количество фотонов в полость, прежде чем деструктивная интерференция погасит оба источника, по сути, создавая "стену", которая препятствует проникновению дальнейших фотонов.
Созданный механизм обеспечит более простой способ создания квантового света без использования сложных материалов и систем, без которых обычно не обойтись.

Фотоны являются основой для многих квантовых технологий — в частности, для квантовых коммуникаций и квантовых компьютеров. Дело в том, что эти частицы могут быть запутаны или помещены в суперпозицию.

Но чтобы создать эти состояния, исследователи должны работать с крайне неклассическими видами света, которые имеют небольшое количество фотонов или даже всего один фотон. Это может быть трудной задачей, требующей сложной установки, поскольку типичные источники света (например, лазер) генерируют состояния, в которых всегда существует некоторая вероятность наличия большого числа фотонов.

Типичные системы для улавливания одиночных фотонов в полости включают использование материалов с чрезвычайно большой оптической нелинейностью, что заставляет фотоны в полости сильно взаимодействовать друг с другом. В таких системах резонансная частота полости может быть сильно сдвинута при добавлении даже одного фотона. Если посветить лазером на полость, то один фотон может войти, а второй не сможет из-за сдвига частоты, вызванного первым фотоном.

Проблема этого механизма заключается в том, что он требует чрезвычайно большой оптической нелинейности и очень низкого рассеяния, а этого сочетания крайне трудно или даже невозможно достичь.

Система, предложенная исследовательской группой, использует два различных источника для одновременного излучения фотонов в полость, которая обладает чрезвычайно слабой нелинейностью (слишком слабой для работы «традиционных» подходов). При тщательной настройке эти источники гасят друг друга с помощью деструктивной интерференции, создавая "стену", которая блокирует фотоны, как только нужное количество фотонов попадает в полость.

Потенциальные возможности такого применения очень широки. Использование деструктивной интерференции таким образом означает, что в системе не нужно использовать специальные оптически нелинейные материалы, что открывает возможности для нескольких различных платформ, в том числе в качестве инструмента для квантового моделирования.

Базовый механизм также может быть применен ко всем видам электромагнитного излучения, а не только к видимому свету. Одна из возможностей - использовать его для генерации и управления фотонами микроволновой частоты в сверхпроводящей цепи. Это могло бы открыть новые возможности для хранения и обработки квантовой информации.

Учёные даже рассматривают эту систему как потенциальный способ запутывания фотонов — явления, когда наблюдение за одним фотоном автоматически дает информацию о фотоне, с которым он запутан, независимо от того, как далеко они находятся друг от друга.

Исследование опубликовано в журнале Science Advances.
https://www.popmech.ru/

В Институте ядерной физики им. Г.И. Будкера СО РАН (ИЯФ СО РАН) запущен первый в мире лазер на свободных электронах, использующий ондулятор с плавно изменяемым периодом. Оригинальный ондулятор, напоминающий гармошку, предложен, сконструирован и изготовлен в ИЯФ СО РАН, и включает в себя сто магнитных полюсов.
Разработка крайне важна для пользовательских установок — лазеров на свободных электронах и источников синхротронного излучения, поскольку позволяет существенно расширить диапазон генерируемого излучения и упростить работу пользователей — физиков, химиков, биологов и пр.
Новосибирский лазер на свободных электронах (ЛСЭ) — источник мощных пучков терагерцового излучения — является одной из главных пользовательских установок Сибирского центра синхротронного и терагерцового излучения (СЦСТИ) СО РАН. Средняя мощность излучения лазера — рекордная в мире, что позволяет проводить на установке уникальные эксперименты в области физики, химии, биологии, материаловедения и медицины.
Также в состав СЦСТИ СО РАН входят два источника синхротронного излучения: накопитель ВЭПП-3 и электрон-позитронный коллайдер ВЭПП-4М. Синхротронное излучение (СИ) — это электромагнитное излучение заряженных частиц, которые движутся со скоростью, близкой к скорости света, по траекториям, искривлённым с помощью магнитного поля. Для создания магнитного поля используются поворотные магниты и ондуляторы, или вигглеры.
Ондуляторы — основные элементы в источниках синхротронного излучения и лазерах на свободных электронах. Это магнитные системы, которые создают знакопеременное периодическое магнитное поле. Это поле нужно для того, чтобы проходящие в нем электроны приобретали волнообразную траекторию. При движении зарядов по этой траектории они испускают излучение довольно высокой мощности. Для изменения длины волны этого излучения необходимо менять параметры магнитной системы.
В большинстве ондуляторов, которые работают на установках по всему миру, длина волны излучения регулируется изменением величины магнитного поля, при этом период ондулятора остается тем же. В электромагнитных ондуляторах изменяются токи, в ондуляторах на постоянных магнитах — рабочий зазор, в результате меняются магнитное поле и излучаемая длина волны. Но при изменении величины магнитного поля диапазон перестройки невелик.
«Механически гораздо проще поменять зазор ондулятора, чем период, — прокомментировал заведующий лабораторией ИЯФ СО РАН член-корреспондент РАН Николай Винокуров. — Чтобы менять период, необходимо систему раздвигать, как гармошку, а это сложная задача. Мы догадались использовать для ее решения расталкивание постоянных магнитов. Что это значит? Постоянные магниты могут не только притягиваться друг к другу, но и сильно отталкиваться одноименными полюсами. Нами была предложена конструкция, где магниты отталкиваются, как если бы между ними были пружины, только вместо пружин — магнитное поле. Раз между элементами есть расталкивание, то достаточно зафиксировать края и двигать их взад-вперед».
Главное преимущество нового ондулятора состоит в том, что благодаря оригинальной конструкции удается получить больший диапазон перестройки длины волны излучения.
«Устройство действительно напоминает гармошку: так же сдвигается и раздвигается, с той лишь разницей, что вместо мехов — сто магнитных полюсов, которые и создают переменное магнитное поле, — пояснил научный руководитель научного направления СИ академик РАН Геннадий Кулипанов. — Это довольно длинная конструкция. Самое главное, что в ней реализовано — то, что при изменении длины волны продолжается генерация излучения лазера на свободных электронах. Применение таких ондуляторов позволяет расширить диапазон перестройки длин волн для источников СИ и ЛСЭ. Менять период стало возможным практически одним нажатием кнопки. Предложить это было важно, но еще важнее — сконструировать и изготовить».
Впервые идея ондулятора была представлена двенадцать лет назад ведущим научным сотрудником ИЯФ СО РАН кандидатом физико-математических наук Олегом Шевченко на конференции по лазерам на свободных электронах. После этого лабораторией 8–1 и научно-конструкторским отделом института при определяющем участии старшего научного сотрудника ИЯФ СО РАН Владимира Ческидова была спроектирована оригинальная конструкция, в которой были реализованы уникальные механические решения.
Например, для обеспечения минимального трения между секциями ондулятора и направляющими была предложена специальная система на подшипниках качения. Также НКО разработал систему для магнитных измерений.
Затем ондулятор был изготовлен в экспериментальном производстве ИЯФ СО РАН. Работа была поддержана грантом Российского научного фонда 14–12–00480 «Разработка и изготовление прототипа ондулятора с переменным числом периодов и исследование его магнитного поля». После изучения магнитного поля ондулятора при разных периодах было решено поставить его вместо одного из старых электромагнитных ондуляторов на уникальную научную установку «Новосибирский ЛСЭ», но, чтобы запустить устройство в работу, пришлось кое-что сделать дополнительно — в частности, вакуумную камеру и подвески на установку.
По словам ученых, ондулятор с переменным периодом не просто ноу-хау, это первое устройство такого типа, которое работает на действующей установке. В данный момент команда установки «Новосибирский ЛСЭ» изучает, как меняется длина волны в разных диапазонах изменения периода. Таким образом исследователи получают информацию о том, какие минимальные и максимальные длины волн, соответствующие разным периодам, позволяет получить ондулятор.
На Новосибирском ЛСЭ работают пользователи из нескольких институтов Сибирского отделения РАН и НГУ, а также из университетов и исследовательских институтов Москвы, Санкт-Петербурга, Нижнего Новгорода, Самары, Южной Кореи и Германии. Здесь проводятся научные исследования в области изучения кинетики химических реакций, молекулярной спектроскопии, молекулярного магнетизма, биологии, медицины, физики полупроводников, материаловедения и физической оптики.
«Нашим пользователям нужна перестраиваемая длина волны, они хотят работать с излучением в разных диапазонах, и теперь им станет намного удобнее вести исследования, — сказал Николай Винокуров. — Основное преимущество, которого мы добиваемся, — расширение диапазона перестройки длины волны. Мы предполагаем, что теперь эта перестройка будет занимать значительно меньше времени, и, соответственно, можно будет быстрее менять длины волн».
Установка «Новосибирский ЛСЭ» включает в себя три лазера на свободных электронах, которые работают в разных диапазонах длин волн. Соответственно, потребители могут использовать излучение и от первого, и от второго, и от третьего. В данный момент для оптимизации работы установки один из электромагнитных ондуляторов заменен на ондулятор на постоянных магнитах с переменным периодом. В ближайшие годы планируется заменить еще один электромагнитный ондулятор на ондулятор с переменным периодом. Второй ондулятор будет отличаться от первого конструкцией и свойствами.
В частности, если в первом использовались стандартные постоянные магниты, то для второго будут изготовлены на заказ магниты сложной формы, позволяющие получить большее поле в рабочей области ондулятора.
Если будет обеспечено должное финансирование, новые ондуляторы можно будет использовать в различных перспективных проектах, в том числе связанных с источниками синхротронного излучения.
«Буквально на днях подписано соглашение с Министерством науки и высшего образования РФ по разработке новых подходов к созданию источников СИ. Нам выделен грант в форме субсидии на разработку специализированных ондуляторов и электронного накопителя, на который эти ондуляторы будут установлены. Мы собираемся продолжать исследования, направленные на расширение возможностей ЛСЭ и других источников излучения, работающих в разных диапазонах длин волн, в том числе в рентгеновском», — подчеркнул Николай Винокуров.
Источник: https://scientificrussia.ru/

Физики применили технику реконструкции аттосекундных биений, возникающих при двухфотонном поглощении, чтобы изучить фотоионизацию молекулы фторида углерода, опосредованную резонансом формы. Оказалось, что время задержки фотоэлектрона крайне чувствительно к углу, под которым он вылетает из молекулы, а количественное объяснение результатов эксперимента требует развития новых теорий.
Резонансом формы называют квазисвязанное состояние квантовой системы, вызванное сложной формой ее потенциала. Про такой резонанс обычно говорят в контексте молекулярной физики и химии, где электрон попадает в локальный минимум потенциала, хотя известно, что похожий эффект проявляет себя и в ядерных реакциях. Во всех случаях резонанс формы выражается в задержке, с которой происходит взаимодействие между частями системы. Для случая молекул речь идет о фемтосекундах.
Доступ к исследованию процессов на таких коротких временах появился сравнительно недавно благодаря развитию техники аттосекундной спектроскопии. С ее помощью физики уже пытались изучать резонанс формы при фотоионизации молекул. В этом процессе электрон на некоторое время застревает в энергетической яме, вызванной балансом между обменным, кулоновским и центробежными силами, после чего туннелирует в континуум.
Ученые научились измерять характерные времена задержки, вызванные резонансом, однако зависимость этих времен от углов и состояний до недавнего времени никто не исследовал.
Группа физиков из Китая, США и Швейцарии под руководством Ганса Вёрнера (Hans Wörner) из Швейцарской высшей технической школы Цюриха впервые смогла получить такую информацию для фотодиссоциации молекулы фторида углерода.
Источник: https://www.nanonewsnet.ru/

Американские ученые использовали лазер для быстрого и обратимого изменения свойств материала. Ранее этот подход оптической инженерии был затруднен тем, что лазерное излучение нагревало материал, повреждая его или затрудняя возвращение в исходное состояние. Новый метод меняет строение энергетических уровней молекул, не меняя при этом положении электронов. Свойства при этом изменяются без нагревания. Статья опубликована в журнале Nature.
Инструменты оптической инженерии позволяют использовать лазерное излучение для быстрого и временного изменения свойств материала. Потенциальные приложения этих технологий включают создание окон, трансформирующихся в зеркала, и оптических компьютеров. Однако технология была ограничена тем, что лазеры очень сильно нагревают материалы. Теперь ученые из Калифорнийского технологического института смогли решить эту проблему.
«Лазеры, необходимые для таких экспериментов, очень мощные, поэтому могут нагреть и повредить материал, — говорит соавтор исследования Цзюньи Шан. — С одной стороны, мы хотим, чтобы материал подвергался воздействию очень интенсивного лазерного излучения. С другой — не хотим, чтобы материал вообще поглощал этот свет. Нам удалось найти “золотую середину”, настроив частоту излучения таким образом, чтобы заметно изменить свойства материала без выделения нежелательного тепла».
Идеальный для применения метода материал, содержащий марганец и фосфор, поглощал лишь небольшое количество света в инфракрасном диапазоне. В экспериментах ученые использовали интенсивные инфракрасные лазерные импульсы продолжительностью около 10-13 секунд, чтобы сделать материал практически полностью прозрачным. Процесс был обратим — как только лазер выключался, материал мгновенно возвращался в исходное состояние. Это было бы невозможно при нагревании, так как материалу потребовалось бы много времени, чтобы рассеять тепло.
Это происходило благодаря тому, что лазерное излучение влияло на строение энергетических уровней материала, тем самым меняя его свойства. При этом сами электроны оставались на прежних энергетических уровнях, не поглощая излучения и не нагревая материал.
Источник: https://inscience.news/

Команда немецких физиков из Центра квантовой динамики Гейдельбергского университета изменили взаимодействие между микроскопическими квантовыми магнитами — спинами. В исследовании магниты впервые сохраняли свою первоначальную ориентацию в течение длительного периода в изолированных квантовых системах.
В своих экспериментах исследователи использовали газ из атомов, который был охлажден до температуры, близкой к абсолютному нулю. С помощью лазера атомы были раскалены и отделяли электроны на макроскопические расстояния от атомного ядра. Эти «атомные гиганты», известные как атомы Ридберга, взаимодействуют друг с другом на расстояниях почти в миллиметр.
«Ансамбль ридберговских атомов обладает точно такими же характеристиками, что и взаимодействующие неупорядоченные квантовые магниты. Это делает его идеальной платформой для моделирования и изучения квантового магнетизма», — утверждает ведущий специалист исследования, доктор Нитивади Тайчароен.
Исследование состояло в том, чтобы управлять динамикой квантовых магнитов, применяя методы из области ядерного магнитного резонанса. В своих экспериментах исследователи применили специально разработанные периодические микроволновые импульсы для изменения спинов атомов с целью контроля взаимодействия между ними.
Микроволновые импульсы реагируют на ридберговские атомы в миллиардные доли секунды. Одновременно атомы сверхчувствительны к любым внешним воздействиям, какими бы микроскопическими они ни были. В своих экспериментах ученым удалось сохранить макроскопическую намагниченность.
«Это похоже на разбитое стекло, волшебным образом собирающееся после того, как оно упало на пол», — говорят ученые.
Силы между частицами, атомами, молекулами или даже макроскопическими объектами, такими как магниты, определяются взаимодействиями природы. Например, два близко расположенных стержневых магнита перестраиваются под действием магнитных сил.
Эти исследования важны для лучшего понимания основных процессов в сложных квантовых системах.
«После первой и второй квантовой революции, которые привели к пониманию систем и точному управлению отдельными объектами, мы уверены, что наша техника динамической настройки взаимодействий программируемым способом открывает путь к квантовым технологиям 3.0», — заключает профессор Маттиас Вайдемюллер.
Источник: https://hightech.fm/

Физикам из MIT впервые удалось провести необычный квантовый эксперимент, результаты которого были предсказаны более 30 лет назад, — если облако газа сделать достаточно холодным и плотным, оно станет невидимым, так как перестанет отражать или поглощать фотоны. Процесс так называемой блокировки Паули был успешно подтвержден в научном эксперименте.
Использовать этот эффект для превращения в невидимые любых предметов не получится — он проявляется при температуре, близкой к абсолютному нулю. Но метод может быть применим для предотвращения потери информации в квантовых компьютерах.
«Мы наблюдали очень специфическую и простую форму блокировки Паули, когда атому запрещают делать то, что атомы делают обычно: рассеивать свет, — сказал профессор Вольфганг Кеттерле, старший автор исследования. — Это первое четкое наблюдение этого эффекта, и оно демонстрирует новый феномен в физике».
Блокировка Паули выводится из принципа запрета Вольфганга Паули, сформулированного австрийским физиком в 1925 году. Он постулировал, что так называемые фермионные частицы — протоны, нейтроны и электроны — с одинаковым квантовым состоянием не могут существовать в том же пространстве, пишет Life Science.
Поскольку на квантовом уровне имеется конечное количество состояний, принцип заставляет электроны в атомах объединяться в оболочки с более высоким уровнем энергии, которые вращаются по более далеким орбитам вокруг атомного ядра. Кроме того, из-за него электроны разных атомов держатся друг от друга подальше.
Этот принцип создает не только обилие элементов периодической таблицы, но и не дает нам провалиться сквозь землю в центр планеты, так как создает структуру материи.
Принцип запрета распространяется и на газы. Обычно у атомов в газовых облаках достаточно свободного пространства, но если их охладить, они начинают терять энергию, занимают самые низкие из доступных состояний. В итоге частицы не могут изменить энергетическое состояние ни на более низкое, ни на более высокое. Они так плотно сбиты в кучу, что больше не могут взаимодействовать со светом — он просто проходит сквозь них.
Для того чтобы выполнить такой сложный трюк, ученые настроили фотоны в лазерном луче так, что они сталкиваются только с атомами, движущимися в противоположном с ними направлении. Они заморозили облако лития до 20 мкК, то есть чуть выше абсолютного нуля. Затем задействовали второй, сфокусированный лазер для сжатия атомов до рекордной плотности примерно 1 квадрильона атомов на кубический сантиметр. Третий лазер определил, насколько невидимым стали атомы. Как и предполагала теория, ученые добились снижения рассеяния на 38% по сравнению с комнатной температурой.
Две других команды физиков независимо друг от друга показали схожие результаты на примерах газов калия и стронция.
Теперь, когда блокировка Паули достигнута экспериментально, можно приступать к созданию материалов, действующих как плащ-невидимка в определенной физической среде. Они станут особенно полезными для предотвращения квантовой декогерентности — досадной потери квантовой информации в ходе вычислений.
Источник: https://www.nanonewsnet.ru/

 

Учёным НИФТИ ННГУ удалось вырастить полупроводниковые наноструктуры с эффектом спиновой памяти – плотной и энергонезависимой магнитной памяти, базирующейся на квантовых технологиях. Физики и технологи создали структуру из сверхтонкого слоя магнитных атомов марганца (Mn), который находится в нескольких нанометрах от полупроводниковой квантовой ямы с арсенидом галлия (GaAs), а также продемонстрировали запись и считывание информации с помощью импульсов поляризованного света. Сегодня такие гибридные платформы, сочетающие свойства полупроводникового диода и магнитного элемента памяти, разрабатываются многими научными коллективами России и мира, прежде всего – США и Японии. Структура, созданная в НИФТИ ННГУ обладает характеристиками на уровне лучших образцов. Нижегородским учёным удалось добиться стабильного эффекта спиновой памяти в наноструктуре с атомарно тонкими слоями магнитных атомов. Результат зафиксировала команда учёных под руководством д.ф.-м.н. Михаила Дорохина. Работа опубликована в ведущем международном журнале Physical Review B. Спиновая память – одно из главных направлений спиновой электроники. Это квантовые технологии, которые основаны на управлении магнитными моментами электронов. Каждый электрон несёт не только заряд, но и спин (от англ. spin – «вращение»), собственный магнитный момент, который создает вокруг себя магнитное поле. Им можно управлять, когда электрон «заперт» в квантовой яме – сверхтонком слое полупроводника, ограничивающем движение частицы. Спин электрона можно поворачивать и ориентировать в разных направлениях, как стрелку компаса. С помощью этих переключений в спиновой памяти происходит кодирование информации. Используя таким образом магнитные моменты электронов и атомов, «записывая» их и «считывая», можно построить более быструю и энергоэффективную компонентную базу электроники, заменить традиционные полупроводниковые диоды, светодиоды и транзисторы на их спиновые аналоги. Для этого нужен материал, который обладает свойствами и полупроводника, и постоянного магнита. Получение гибридных структур, содержащих полупроводниковые и магнитные слои – одно из главных направлений в работе международной команды учёных из Научно-исследовательского физико-технического института, физического факультета Университета Лобачевского (г. Нижний Новгород, Россия), Университета Кампинаса и Университета Уберландии (Бразилия). Научные центры работают над проектами в области спиновой электроники уже более 15 лет. Бразильские коллеги помогают нижегородцам манипулировать магнитными свойствами образцов, воздействуя на них сверхбыстрыми фемтосекундными лазерными импульсами. Именно с помощью этой техники удалось обнаружить эффект спиновой памяти в последнем исследовании. Оптический импульс создает поляризацию, то есть разность в числе магнитных моментов различной ориентации, в квантовой яме со слоем арсенида галлия (GaAs) в центре. Электроны поляризуются и намагничивают соседний нанослой атомов марганца (Mn), который, в свою очередь, запоминает и сохраняет эту поляризацию. Эта технологическая база может стать одним из компонентов российской наноэлектроники и спинтроники. В планах у команды учёных – углубленное описание физики микроскопических процессов и более точный расчет параметров.

Источник: http://www.unn.ru/

Анализ модового состава такого лазера и симуляция распространения в нем света подтвердили, что лучевые траектории мод совпадают с соответствующими геодезическими линиями. Исследование опубликовано в Physical Review Letters.

Неевклидова геометрия оказала большое влияние на развитие математической физики. Поиск кривых, которые соответствуют кратчайшему пути (геодезических линий или просто геодезических), на многообразиях произвольных размерностей и метрик стал драйвером развития классической механики, оптики и релятивизма. С ними напрямую связан принцип наименьшего действия, который определяет траектории объектов в классической физике. Если для плоской геометрии он предписывает прямые линии для свободного тела или луча света, то в искривленном пространстве эти траектории будут сложнее.
Из всех разделов физики оптика стала наиболее подходящей дисциплиной для контролируемого лабораторного исследования процессов в неевклидовых структурах. Это стало возможным благодаря прогрессу, достигнутому в области литографического изготовления сложных трехмерных структур с микронным разрешением. В силу схожести волновых законов света с другими волновыми явлениями эксперименты по неевликодой фотонике могут стать полигоном для проверки аналогичных эффектов в акустике, гидродинамике, гравитации и квантовой механике, которые невозможно провести напрямую.
Одним из таких экспериментов стала работа группы физиков из Китая и Франции под руководством Джозефа Зисса (Joseph Zyss), которые исследовали свойства микрорезонатора в форме ленты Мёбиуса, превратив его в лазер. Анализируя спектральный состав излучения такого микролазера, авторы определили, что соответствующие моды микрорезонатора описываются с помощью геодезических ленты.
Обычный кольцевой микрорезонатор содержит в себе моды шепчущей галереи. С точки зрения лучевой оптики такие моды соответствуют многократному отражению от внешней границы резонатора (это приближение можно использовать, когда размеры резонатора много больше длины волны). В пределе, когда луч почти скользит по поверхности, а общее число отражений становится очень большим, замкнутый оптический путь шепчущей моды равен периметру резонатора, умноженному на показатель преломления. Лента Мёбиуса же отличается об обычного кольца тем, что у него всего одна граница и одна неориентируемая поверхность. Это делает невозможным существование в ней мод шепчущей галереи. Луч, скользящий, вдоль ее границы, в конце концов оторвется от нее на вогнутой части ленты.
Ответ на вопрос о том, какие должны быть моды у такого необычного резонатора, может дать поиск его геодезических с помощью вариационного принципа. В силу сложности рассматриваемой структуры физики численно варьировали их длину в приближении тонкой ленты. Это позволило снизить размерность уравнения Гельмгольца с трех до двух, а также игнорировать поляризацию. В результате такого полуклассического анализа авторы получили набор собственных мод микрорезонатора в форме ленты Мёбиуса, которые они классифицировали по количеству отражений луча от границ. Среди них выделяются геодезические с большим углом между направлением луча и границей, для которых все отражения чередуются на разных сторонах ленты, а также такие кривые, для которых характерны отражения по одну сторону ленты с однократным переходом на противоположную сторону.
Для проверки своих расчетов физики изготовили несколько мёбиусных микрорезонаторов, вырезая их методом лазерной литографии из фоторезиста IP-G780. Для того, чтобы такие резонаторы испускали лазерный свет, фоторезист был допирован красителем. Они варьировали радиус в диапазоне от 40 до 60 микрон, толщину — от 1 до 5 микрон, а ширину ленты оставляли неизменной и равной 15 микрон. Заставив микрорезонаторы излучать, ученые сопоставили генерируемые спектральные линии с оптическим путем каждой моды. Такой анализ подтвердил что основная мода такого резонатора — это геодезическая 5а, в том время как мод шепчущей галереи они не нашли.
Несмотря на то, что длина волны света много меньше, чем размеры резонатора Мёбиуса, авторы решили посмотреть, как отклонение от лучевой модели скажется на результатах теории. Они симулировали распространение света с помощью метода конечных разностей во временной области. Наблюдая за поведением максимума плотности энергии, они увидели, что поведение света в микрорезонаторе не сильно отличается от лучевого подхода.
Ленты Мёбиуса интересны не только математикам и физикам. Недавно мы рассказывали, как такие сложные поверхности были обнаружены в жидких кристаллах из бактериофагов.
Источник: https://nplus1.ru/

Страница 1 из 5

© 2018 Лазерная ассоциация

Tout sur Kamagra ici https://www.kamelef.com/kamagra-ou-viagra.html.

Поиск