Физики создали дешевый и простой в управлении и использовании жидкостный лазер. Физики из Университета Цукубы в Японии разработали перестраиваемый лазер, работающий на основе капель жидкости. В отличие от ранее созданных капельных лазеров, новому устройству не требуются специальные условия. Технология поможет создать дешевые и гибкие устройства для оптической связи.
Для своей разработки исследователи использовали «эффект лотоса». Эти растения известны своей способностью очищаться от пыли. Из-за микроскопических бугорков на поверхности листа капли воды не испаряются, но формируют почти идеальные сферы, которые скатываются вниз, увлекая за собой частицы пыли.
Физики использовали аналогичный подход для создания жидких капель, которые могут действовать как лазеры, оставаясь стабильными до месяца. Они использовали ионную жидкость тетрафторборат 1-этил-3-метилимидазолия и смешали ее с красителем. Кварцевую подложку для «жидкого лазера» исследователи покрыли наночастицами фторированного кремнезема, чтобы поверхность отталкивала жидкости, как лист лотоса.
В серии экспериментов ученые показали, что, если нанести с помощью обычного коммерческого струйного принтера на такую обработанную кремниевую подложку подготовленную жидкость, крошечные капельки формируют практически идеальные сферы.
Такие капли могут оставаться стабильной в течение как минимум 30 дней. Форма и устойчивость к испарению позволяют капле сохранять оптический резонанс при возбуждении лазерным источником накачки. А управлять лазером можно продувая поверхность газообразным азотом: это сдвигает лазерные пики в диапазоне от 645 до 662 нм, слегка деформируя форму капель.
Исследователи отмечают, что все современные капельные лазеры требуют специальных условий и не могут работать в воздухе, поскольку капли быстро испаряются. Представленная разработка — первый дешевый и доступный жидкостный лазер.
Источник: https://hightech.fm/

Китайские физики исследовали осцилляции Раби, возникающие под действием интенсивного лазерного света, при диссоциации молекулярного иона водорода. Они обнаружили, что изменение населенности молекулярных орбиталей существенно усложняет процесс растяжения связи между протонами, что сказывается на их разлете. Измеряя кинетическую энергию протонов с помощью ионного импульсного спектрометра, они убедились, что построенная ими теория хорошо это описывает.
Исследование опубликовано в Light: Science & Applications.
Согласно квантовым представлениям о веществе, оно может находиться в определенных энергетических состояниях, переходы между которыми сопровождаются испусканием или поглощением квантов какого-либо излучения. Энергия кванта при этом равна разности энергий уровней. Первое, что описали физики в рамках такого подхода стали атомы. Согласно наивной квантовой модели атом представляется в виде двухуровневой системы, испускающей одиночные кванты. Ее оказалось достаточно, например, чтобы позволить Эйнштейну вывести формулу Планка.
Сегодня мы знаем, что взаимодействие даже двухуровневых систем (необязательно атомов) с резонансным полем имеет более сложный характер. Ситуация, когда излучение может быть описано одиночным фотоном, встречается в физике довольно редко, а точное описание излучения и поглощения квантов требует решения динамических уравнений. Согласно ему воздействие импульса на систему с частотой, близкой к частоте ее перехода, меняет ее населенность по мере прохождения импульса. Если импульс достаточно длинный или интенсивный (значение имеет площадь под кривой, описывающей его форму), система начнет периодически и плавно переходить с одного уровня на другой. Такие осцилляции называются осцилляциями Раби.
Осцилляции Раби играют важную роль в квантовой динамике множества систем. Их исследуют и применяют для превращения фононов в магноны, поатомной сборки ультрахолодных молекул, наблюдения паулевской блокировки вынужденного излучения, когерентного пленения спина вакансий и многого другого. Интерес представляют также наблюдение осцилляций между колебательными уровнями молекул, поскольку в этом случае энергия состояний зависит от динамики ядерной плотности. Физики пока не до конца понимают, как ядерное движение скажется на таких наблюдаемых величинах, как, к примеру, кинетическая энергия продуктов диссоциации молекулы.
Разобраться в этом вопросе решила группа китайских физиков под руководством Цзянь У (Jian Wu) из Восточно-китайского педагогического университета и Фэна Хэ (Feng He) из Шанхайского университета Джао Тонг.
Источник: https://nplus1.ru/

Российские ученые описали оптические свойства наночастиц в виде усеченных конусов, на основе которых можно создавать высокоточные детекторы, нанолазеры и сенсоры. Более того, использование наноконусов позволит упростить настройку оптических приборов и материалов, в том числе способных поглощать или полностью пропускать свет.
Результаты исследования, поддержанного грантом Российского научного фонда (РНФ), опубликованы в журнале Scientific Reports.
Нанофотоника — довольно молодая область физики, которая изучает способность нанометровых структур — размером в миллиард раз меньше метра — испускать, поглощать и преобразовывать свет. Наиболее интересны для специалистов в этой области диэлектрические наночастицы, поскольку они обладают особыми электрическими и магнитными свойствами, благодаря которым направлением и интенсивностью их излучения можно управлять. На основе диэлектрических наночастиц, например кремниевых и керамических, уже существуют различные оптические устройства, нашедшие свое применение в медицине и технике: нанолазеры, наноантенны, сенсоры и детекторы, имеющие более высокую эффективность и чувствительность, чем их традиционные аналоги.
Интересно, что управлять свойствами нанофотонных материалов можно за счет возбуждаемых падающим светом мультиполей, от различных комбинаций которых диэлектрические частицы по-разному рассеивают излучение. Например, при разных комбинациях магнитных и электрических мультиполей они могут рассеивать лучи только в направлении распространения света от источника (так называемый эффект Керкера), в противоположном ему (эффект анти-Керкера) или же перпендикулярно, то есть «вбок». Последний вариант позволяет получить на основе диэлектрических частиц абсолютно прозрачные материалы, то есть пропускающие весь свет без значительного отражения и поглощения, или, наоборот, материалы — идеальные поглотители.
Все эти варианты взаимодействия со светом описаны только для частиц простой формы — в виде шара, куба и цилиндра, тогда как интерес исследователей вызывают частицы более сложной геометрии, на основе которых можно создавать материалы с еще более разнообразными оптическими свойствами.
Ученые из Московского физико-технического института (Долгопрудный), Университета ИТМО (Санкт-Петербург), Московского государственного университета имени М.В. Ломоносова (Москва) с зарубежными коллегами описали оптические свойства кремниевых наночастиц, имеющих форму усеченных конусов. Они интересны тем, что при изменении геометрических параметров, например, таких как радиусы оснований или высота наноконусов, меняется их способность рассеивать свет в широких пределах.
С помощью численного моделирования авторы определили геометрические параметры рассеивателей, сочетания мультиполей в которых позволяют достичь для частиц в виде усеченного конуса эффекты Керкера. На основе данных частиц можно будет создавать антенны, контролирующие излучения на наноуровне. Кроме того, ученые впервые доказали, что возможно создать наноконусы, которые вовсе не будут рассеивать свет и к тому же усилят магнитные и электрические поля внутри частицы. Ранее этот эффект, крайне полезный для оптических усилителей, которые используются, например, в системах передачи информации, был известен только для частиц в виде цилиндров и эллипсов. Обратного явления — сверхрассеяния — исследователи смогли достичь, изменяя соотношение высоты частиц и диаметров верхней и нижней поверхностей усеченного конуса.
«Наше исследование поможет упростить и удешевить разработку нанофотонных устройств на их основе — наноантенн для оптических и телекоммуникационных приборов, прозрачных метаповерхностей, используемых в голографии и дополненной реальности, нанолазеров, а также различных сенсоров и детекторов. В дальнейшем мы планируем более подробно исследовать ряд эффектов, которые удалось получить на кремниевых наноконусах», — рассказывает Александр Шалин, участник проекта, поддержанного грантом РНФ, доктор физико-математических наук, ведущий научный сотрудник лаборатории контролируемых оптических наноструктур МФТИ.
Источник: https://scientificrussia.ru/

Красные оксидные нанолюминофоры синтезировали с помощью метода лазерного испарения ученые Института катализа СО РАН.
Им удалось достичь рекордного квантового выхода в этих соединениях — выше 60%, а значит, источники на их основе будут энергоэффективными и яркими. Полученные материалы уже могут использоваться в биотехнологиях и электронике.
Нанолюминофор — это наноразмерное вещество, которое преобразовывает поглощаемую энергию в световое излучение в какой-либо области видимого спектра.
Красные нанолюминофоры востребованы на рынке, так как позволяют получать источники теплого белого света.
В ряде приложений красное свечение нужно само по себе. Такие нанолюминофоры применяют для создания оптических меток в биовизуализации — передовом методе диагностики заболеваний, в том числе онкологических. Их используют в новейших дисплеях для повышения пространственного разрешения. Наконец, они нужны для термолюминесцентных датчиков.
Чем меньше размер светящихся наночастиц, тем они эффективнее для указанных приложений. Но при уменьшении их размера падает показатель квантового выхода — отношение количества испускаемых фотонов к количеству поглощенных фотонов. Квантовый выход отвечает за энергоэффективность и яркость источников на основе нанолюминофоров.
Ученым Института катализа СО РАН удалось решить проблему низкого квантового выхода.
«Существующие на рынке люминофоры изготавливаются на основе кубической фазы оксида иттрия. Ее достаточно легко получить химическими методами, но у нее невысокий квантовый выход, а красный свет недостаточно красный. У оксида иттрия есть другая фаза, моноклинная, которая имеет совершенно иную кристаллическую структуру и которую химическими методами получить нельзя. Мы смогли синтезировать ее физическим методом — методом лазерного испарения. Мы увидели, что ее люминисцентные характеристики лучше, чем у кубической фазы. Добавив ионы европия, мы смогли получить рекордный квантовый выход для таких соединений — 61%, и более красный свет», — рассказывает автор исследования, научный сотрудник отдела гетерогенного катализа ИК СО РАН, к.ф.-м.н. Антон Костюков.
Чтобы получить красные нанолюминофоры, ученые берут оксид иттрия с добавленными в него ионами европия и готовят из него плотную мишень — керамическую таблетку. Эту таблетку помещают в установку лазерного синтеза, состоящую из лазера и вакуумной камеры, где происходит лазерное испарение. Под действием лазера мишень начинает испаряться, а ученые управляют конденсацией испаренных частиц. Подобрав оптимальные условия, они получают наноразмерный люминофор с моноклинной структурой.
По словам Антона Костюкова, полученное соединение уже готово для применения в биотехнологических или электронных приложениях — необходимо только масштабировать объемы производства нанолюминофора.
Статья на основе исследования опубликована в журнале Ceramics International.

Источник: https://academcity.org/

 

Страница 11 из 11

© 2024 Лазерная ассоциация

Поиск