Машинное зрение — быстро развивающаяся область робототехники, объединяющая камеры, датчики и алгоритмы в систему получения и анализа изображений. Современные условия требуют, чтобы собранные данные обрабатывались как можно быстрее, а значит, в самом устройстве — в смартфоне, ноутбуке или автомобиле. Для таких граничных вычислений специалисты из Университета Цинхуа (КНР) разработали передовой фотонный чип, который обрабатывает, передает и восстанавливает изображения за наносекунды.
Граничные, или периферийные вычисления сокращают время обработки задачи и позволяют эффективнее использовать сеть, однако даже они происходят недостаточно быстро для современных задач вроде автономного управления транспортом. Миллисекундные задержки в обмене информацией между оптикой и электроникой ограничивают скорость процессов анализа изображений.
Команда ученых из Университета Цинхуа спроектировала чип с оптической параллельно-вычислительной матрицей (optical parallel computational array, OPCA) с матрицей считывания-вычисления и кольцевыми резонаторами. Такая конструкция позволяет фотонному чипу преобразовывать оптическое изображение в двухмерную репрезентацию интенсивности света, которую можно направить в чип при помощи массива микролинз, сообщает IE.
Пропускная способность чипа ORCA — до ста миллиардов пикселей, время отклика — всего шесть наносекунд. Поскольку данные обрабатываются как световые сигналы, исследователи предлагают использовать их для оптической нейронной сети. Она сможет выполнять задачи по классификации, которые обычно решаются на периферии.
«Ввиду того, что каждый сенсорно-вычислительный элемент этого чипа реконфигурируемый, все они могут работать как программируемый нейрон», — пояснил в пресс-релизе Фан Лю, руководитель научной группы.
Источник: https://hightech.plus/

Ученые ИТМО побили свой же рекорд по величине самого компактного в мире нанолазера: им удалось уменьшить размер наночастицы с 310 нанометров до 200 (это в 5 тысяч раз меньше миллиметра!). Установка работает при комнатной температуре, а увидеть излучаемый лазером зеленый свет можно в стандартном оптическом микроскопе. Разработка поможет в создании мельчайших деталей для цифровых микроустройств и приборов для анализа показателей здоровья, а также позволит повысить качество цветопередачи экранов в очках виртуальной реальности.
Нанолазеры — это лазеры, размер которых меньше длины волны света (или фотона — частицы света), излучаемого ими. Как правило, их величина во всех трех пространственных измерениях (длина, высота и ширина) исчисляется в сотнях нанометров. С помощью таких устройств создаются мельчайшие детали для микроэлектродных приборов. К ним относятся не только, например, сложная вычислительная техника для лабораторий, но и медицинские приборы и даже отдельные составляющие игровых приставок. С каждым годом микроэлектроника становится все сложнее и требует создания все более компактных компонентов, однако лишь единичные установки из-за своих ограничений по размерам позволяют производить их.
Ученые ИТМО предложили новые технологии для создания нанолазеров, которые бы соответствовали этим требованиям. Разработка представляет собой наночастицу перовскита (созданный в лаборатории материал с химическим составом CsPbBr3) в форме кубоида. Этот материал изучается в университете с 2017 года. За это время ученым удалось доказать, что он стабилен, имеет высокий коэффициент оптического усиления (позволяет использовать энергию света максимально эффективно), а главное — он лучше всего работает в зеленом спектре.
Долгое время этот диапазон длин волн был наиболее проблемным для создания компактных лазеров, особенно в масштабах производства. Этой части видимого спектра даже дали название green gap («зеленая яма/ пробел»). Однако ученым с помощью перовскита наконец удалось разрешить этот вопрос. Это открыло возможности для еще большей компактизации нанолазера, так как длина волны зеленых фотонов в три раза меньше инфракрасных, используемых в классических микролазерах.
Большую часть экспериментов провели аспиранты ИТМО Михаил Машарин и Дарья Хмелевская, руководил проектом Сергей Макаров, доктор физико-математических наук, руководитель лаборатории гибридной нанофотоники и оптоэлектроники ИТМО.
«Ключевая идея предложенного дизайна нанолазера — использование нового механизма его работы за счет выстраивания сильной связи «свет-вещество». Это помогает значительно снизить порог его «включения». Излучение нанолазера имеет направленный характер, что позволяет эффективно собирать его в нашей оптической схеме и регистрировать на лабораторном спектрометре (прибор для фиксации, обработки и анализа волн света)», — рассказывает Сергей Макаров, руководитель лаборатории гибридной нанофотоники и оптоэлектроники ИТМО.
На данном этапе исследований ученым удалось разместить частицу перовскита на металле. Это открывает возможности для создания установки нанолазера, работа которого будет активироваться электричеством, а не светом, как это происходит сейчас. На основе таких сверхкомпактных лазерных диодов с электрической «накачкой» можно будет создавать микропиксели в очках дополненной реальности, медицинских приборах мониторинга состояния человека, а также в многофункциональных оптических чипах.
Работа проводилась в рамках программы «Приоритет 2030».

Источник: https://news.itmo.ru/

Ученые нашли способ генерировать лазерное излучение в полых световодах — тонких «трубках» из кварцевого стекла с отражающей микроструктурой. Для этого с помощью мощного микроволнового излучения авторы зажгли в полом световоде газовый разряд, создающий лазерное излучение. Такой подход позволит в тысячи раз увеличить выходную мощность существующих волоконных лазеров. Кроме того, исследователи показали, что полые световоды могут эффективно преобразовывать лазерное излучение из ближнего инфракрасного диапазона в средний инфракрасный, удобный для анализа химического состава веществ. Результаты исследований, поддержанных грантами Российского научного фонда (РНФ), опубликованы в серии из трех статей в Journal of Selected Topics in Quantum Electronics.
Оптическое волокно или световод — это тонкая стеклянная нить, по которой можно передавать свет. При этом свет распространяется практически без потерь вдоль сердцевины световода — его центральной части, — благодаря многократным отражениям от окружающей ее стеклянной оболочки. Мы постоянно сталкиваемся со световодами, когда, например, пользуемся Интернетом, так как световоды лежат в основе оптических линий связи, объединяющих континенты в единое информационное пространство. Кроме того, световоды незаменимы в медицине, например в составе волоконных эндоскопов для диагностики заболеваний, а также широко применяются при высокоточной резке и сварке материалов с помощью волоконных лазеров.
Однако в световодах, используемых на практике сегодня, сердцевина состоит из кварцевого стекла, через которое можно пропустить только видимый и ближний инфракрасный (ИК) свет, а на остальных длинах волн, в частности в среднем ИК диапазоне, такие световоды абсолютно неприменимы. Кроме того, сердцевина из кварцевого стекла ограничивает максимальную интенсивность света, которую можно передавать по световоду без его повреждения. Преодолеть эти ограничения могут помочь полые световоды, которые активно разрабатываются и изучаются в ведущих лабораториях мира. Несмотря на то, что отражающая микроструктурированная оболочка полых световодов все так же состоит из кварцевого стекла, свет в них передается исключительно по полой сердцевине, что значительно расширяет возможные применения этих устройств.
Ученые из Института общей физики имени А.М. Прохорова РАН (Москва) создали полый световод, с помощью которого смогли с высокой эффективностью преобразовать излучение ближнего ИК-диапазона в средний ИК-диапазон. Авторы взяли коммерчески доступный лазер, генерирующий сверхкороткие импульсы на длине волны около 1 микрометра (ближний ИК-диапазон), и пропустили это излучение через полый световод длиной 3 метра, заполненный обычным и «тяжелым» водородом (дейтерием). В результате на выходе полого световода получили излучение среднего ИК-диапазона. Причем, меняя долю дейтерия в газовой смеси внутри полой сердцевины, а также подстраивая длительность импульсов на входе в световод, исследователи смогли управлять спектром выходного излучения: получать либо строго фиксированные отдельные длины волн, либо широкий спектр, проникающий в средний ИК-диапазон до длин волн более 4 микрометров.
Средний ИК-диапазон называют диапазоном «отпечатков пальцев», поскольку по тому, как вещество поглощает эти длины волн, можно, как по отпечаткам пальцев, определить его химический состав. Достигнутые результаты позволят создавать эффективные и компактные лазерные источники высокой мощности, необходимые для неинвазивной биомедицинской диагностики, а также для контроля качества продуктов и фармацевтических препаратов.
Прорывным достижением авторов стала первая в мире генерация лазерного излучения непосредственно в полом световоде, в который не подавался свет от внешних источников. Чтобы достичь этого, полый световод заполнили смесью инертных газов гелия и ксенона, а к концам световода приставили зеркала, создав, таким образом, оптический резонатор. Затем световод облучили мощными микроволновыми импульсами с частотой, которая применяется в бытовых СВЧ-печах и модулях Wi-Fi. Такое облучение приводило к зажиганию в полом световоде газового разряда, в котором и возникало лазерное излучение.
«Наше исследование — это первая в мире демонстрация лазерной генерации в полых световодах. Эта работа открывает новое направление, которое позволит в будущем генерировать в полых световодах лазерные импульсы такой мощности, которая в тысячи раз превосходит порог разрушения обычных широко используемых световодов со стеклянной сердцевиной. В дальнейшем мы планируем не только существенно повысить выходную мощность созданных нами газоразрядных волоконных лазеров, но и значительно расширить набор генерируемых ими длин волн как в средней инфракрасной, так и в ультрафиолетовой части спектра. Такие лазеры могут найти разнообразные применения от биомедицинской диагностики до литографии при создании микросхем», — рассказывает руководитель проекта, поддержанного грантом РНФ, Алексей Гладышев, старший научный сотрудник Института общей физики имени А. М. Прохорова РАН.
Источник: https://rscf.ru/

Страница 7 из 7

© 2025 Лазерная ассоциация

Поиск